Table of Contents

1. What is Adaptive Control?
2. Resistance’s Relationship to Quality
3. Importance of the Resistance Curve
4. The Reference Weld
5. Real Time Adaptive Decisions
6. Implementing Adaptive Control
7. Adaptive vs. Constant Current Control
8. Conclusion
A tool to analyze welding data and make intelligent corrections based on that analysis.

- The analysis is based on an input of a new variable(s) supplied to the weld control that is related to nugget diameter.
 - Steel – Dynamic Resistance obtained by secondary tip wires
 - Aluminum – Dynamic Force obtained by strain or load cells in the gun
- The corrections are automatically made to weld current and/or weld time during the weld schedule.
Adaptive control is not:
- A tool to solve impossible weld problems. If you can not make a good constant current weld you generally can not make a good adaptive weld.
- A tool that will operate forever without normal weld and tooling maintenance.

There are two types of adaptive controls:
- Those that rely on internal algorithms to make adjustments.
- Those that use a stored “reference weld” and algorithms to make adjustments. These types generally have a better ability to adjust for disturbances.
Adaptive controls are designed to compensate for the following levels of production disturbances:

- Material thickness and composition variations
- Electrode wear (without using steppers)
- Weld force variation
- Gun fit up
- Expulsions
- Sealers
- ……Etc

When Adaptive controls sense an inability to compensate for a disturbance, a new series of alerts/alarms are generated.
The heat generated at the faying resistance creates the nugget.

\[\text{Heat} = I^2 \cdot R \cdot t \]

\[R \propto \frac{\rho \cdot l}{A} \]

[1] Molten Region

[2] Electrical Resistivity, $10^{-3} \Omega \cdot m$ vs Temperature, K
The bulk & contact resistance values fluctuates during the weld as a result of the mechanisms of nugget formation.

The total dynamic resistance observed during RSW is the sum of:

- Contact resistance between the metal sheets (faying surface)
- Bulk resistance of the metal sheets
- Contact resistance between the electrodes and sheets
- Bulk resistance of the electrodes and the electrode holders
The dynamic resistance curve can take on a variety of shapes, but will generally exhibit 3 phases.

The data from the curve provides quality indicators for the weld.

1. Coupling
2. Heating/Melting
3. Nugget Growth

RP = Resistance Peak
RE = Resistance End
RD = Resistance Drop

Constant Current Data
Different materials = Different resistance characteristics

- **Mild/Bare**
 - 25 ms to RP; RD ≳ 40%

- **Mild/HDG**
 - 50 ms to RP; RD ≳ 30%

- **AHSS (Boron; Hot Stamped)**
 - 10 ms to RP; RD ≳ 40%

- **DP980/EG**
 - 20 ms to RP; RD ≳ 20%

Constant Current Data
Weld current level effects the resistance curve.
Importance of the Resistance Curve

Weld force effects the resistance curve.

*Constant Current Data
Importance of the Resistance Curve

Weld time effects the resistance curve.

Constant Current Data
Pulsation effects the resistance curve.

3 impulses (80ms @ 9000A, 20ms cool/off)
Importance of the Resistance Curve

Different weld locations = Different resistance characteristics

Time to RP: 6–30 ms
RP Value: 260–280 μΩ

This drives one schedule for each spot.

Constant Current Data
Expulsion can be detected from the resistance curve, seen as a sharp drop in resistance:
Using Constant Current or Volt/Sec Preheat to stabilize the Resistance curves before the start of the adaptive section of the weld.
Later adaptive controls utilize a “reference weld” to enhance the adaptive algorithm.

The reference weld is constant current weld data that is the blueprint for a “good” welding process.

A good reference weld calls for a process that is:
- Expulsion free
- Stable
- Made with proper equipment (dressed tips, adequate power source, appropriate water cooling etc.)
- Free of process disturbances
- Produces quality welds
The Reference Weld

Expulsion Free

Stable

Proper Tooling

*Constant Current Data
Real Time Adaptive Decisions

0–7 msec: Learned Current

The target current for the beginning of the weld can change based on data analysis.
Real Time Adaptive Decisions

7–16 msec: Auto Adjust

Quick adjustment period to correct initial discrepancy.
Real Time Adaptive Decisions

16–32 msec: Stable

No current changes to evaluate the process.
Real Time Adaptive Decisions

32+ msec: Drive to Peak

Adjust current to achieve a resistance peak, based on the stable period evaluation.
32+ msec: Realized Peak

A fixed resistance drop must be observed for a realized peak.
Real Time Adaptive Decisions

32+ msec: End

Adjust current after peak is realized, and continue until RD and Energy targets are met.
Real Time Adaptive Decisions

Time Extension

If the target RD and Energy targets are not met, time is extended. If time is extended by an excessive amount, the learned current is increased for the next weld.
Real Time Adaptive Decisions

Expulsion Event

Current is increased after an expulsion to add heat & regain the lost nugget material.
Disturbances to the RSW process have major implications on the weld quality.

The ability to detect and adapt to these disturbances can enhance the reliability of RSW.

Stackup Thickness Increase (+0.3mm)

Stackup Thickness Decrease (~0.5mm)
- The decision making algorithm can be adjusted to account for a variety of applications.
 - Type of production – high volume (robot) vs. low volume (portable gun)
 - Type of material – high strength vs. mild metals; coated vs. bare metals
 - Constraints – cycle time; secondary current limits

- This allows the user to fine-tune the system to make better decisions in every situation.

- More flexibility = more complexity
 - This increases the time/knowledge required for proper setup.
An adaptive control system requires:
- Sensors (voltage leads)
- Training
- Setup

The extra time/cost provide an opportunity to enhance the product quality, especially when a process becomes unstable.

The amount of setup may vary for different applications.
- In high volume production, stability/repeatability is key. This is not necessarily true for small scale applications.
It is crucial to have realistic expectations of an adaptive system.
- Modern adaptive controls are not perfect.
- Poor setup results in improper adaptive decisions.

GSI SLV Duisburg study:
- 10 tests comparing adaptive and CC performance using a variety of materials and disturbances.
- These disturbances are common in production environments.
- Adaptive control provided noticeable improvement in weld quality.
Adaptive Control vs Constant Current Control

GSI SLV Duisburg Report: Percent of normal nugget size achieved for 10 disturbances

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
<th>Step</th>
<th>Diameter Compared to Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CC (Upper)</td>
<td>CC (Lower)</td>
</tr>
<tr>
<td>VW01</td>
<td>3-sheet stackup</td>
<td>NSSP upper interface</td>
<td>49%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NSSP lower interface</td>
<td>3%</td>
</tr>
<tr>
<td>VW02</td>
<td>2-sheet stackup</td>
<td>HDG Z100 -> uncoated (+NSSP)</td>
<td>120%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HDG Z100 -> Z140 (+NSSP)</td>
<td>42%</td>
</tr>
<tr>
<td>VW03</td>
<td>Weld with adhesive</td>
<td>Adhesive + NSSP</td>
<td>70%</td>
</tr>
<tr>
<td>VW04</td>
<td>Variation of electrode force</td>
<td>Force 50%</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Force 150%</td>
<td>75%</td>
</tr>
<tr>
<td>VW05</td>
<td>Shunting effect in a 3-weld specimen</td>
<td>NS3, 30mm from anchor</td>
<td>67%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NS3, 15mm from anchor/weld 2</td>
<td>37%</td>
</tr>
<tr>
<td>VW06</td>
<td>Functionality of multi pulse weld</td>
<td>Multi pulse weld, NSSP upper int.</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multi pulse weld, NSSP lower int.</td>
<td>10%</td>
</tr>
<tr>
<td>VW07</td>
<td>Shunting effect + bad fit up</td>
<td>NSSP 40mm, +Z material</td>
<td>61%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NSSP 25mm, +Z material</td>
<td>52%</td>
</tr>
<tr>
<td>VW08</td>
<td>Misalignment of parts/electrodes</td>
<td>10°</td>
<td>43%</td>
</tr>
<tr>
<td>VW09</td>
<td>Welding at the edge of the specimens</td>
<td>8mm / 4mm</td>
<td>54%</td>
</tr>
<tr>
<td>VW11</td>
<td>Electrode life test</td>
<td>thin mild steel, HDG</td>
<td>550 Welds Before Undersized</td>
</tr>
<tr>
<td>Test</td>
<td>Description</td>
<td>Step</td>
<td>CC</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------------</td>
<td>-------------------------------</td>
<td>----</td>
</tr>
<tr>
<td>VW01</td>
<td>3-sheet stackup</td>
<td>NSSP upper interface</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NSSP lower interface</td>
<td>1</td>
</tr>
<tr>
<td>VW02</td>
<td>2-sheet stackup</td>
<td>HDG Z100 -> uncoated (+NSSP)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HDG Z100 -> Z140 (+NSSP)</td>
<td>5</td>
</tr>
<tr>
<td>VW03</td>
<td>Weld with adhesive</td>
<td>Adhesive + NSSP</td>
<td>1</td>
</tr>
<tr>
<td>VW04</td>
<td>Variation of electrode force</td>
<td>Force 50%</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Force 150%</td>
<td>1</td>
</tr>
<tr>
<td>VW05</td>
<td>Shunting effect in a 3-weld specimen</td>
<td>NS3, 30mm from anchor</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NS3, 15mm from anchor/weld 2</td>
<td>1</td>
</tr>
<tr>
<td>VW06</td>
<td>Functionality of multi pulse weld</td>
<td>Multi pulse weld, NSSP upper int.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multi pulse weld, NSSP lower int.</td>
<td>1</td>
</tr>
<tr>
<td>VW07</td>
<td>Shunting effect + bad fit up</td>
<td>NSSP 40mm, +Z material</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NSSP 25mm, +Z material</td>
<td>1</td>
</tr>
<tr>
<td>VW08</td>
<td>Misalignment of parts/electrodes</td>
<td>10°</td>
<td>1</td>
</tr>
<tr>
<td>VW09</td>
<td>Welding at the edge of the specimens</td>
<td>8mm / 4mm</td>
<td>1</td>
</tr>
<tr>
<td>VW11</td>
<td>Electrode life test</td>
<td>thin mild steel , HDG</td>
<td>3</td>
</tr>
</tbody>
</table>

Evaluation Based on Result (Diameter)

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>sum</td>
<td>26</td>
<td>80</td>
<td>50</td>
<td>44</td>
<td>47</td>
<td>37</td>
<td>43</td>
<td>41</td>
<td>35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Real time adjustments provide weld quality enhancements (avoid post-production corrections)</td>
<td>• Additional equipment is needed for resistance feedback (voltage sensors)</td>
</tr>
<tr>
<td>• Automatic response to expulsion events</td>
<td>• Sensors may require additional maintenance</td>
</tr>
<tr>
<td>• Detection and response to unknown disturbances</td>
<td>• Proper setup requires resources (training/knowledge, time, trial parts)</td>
</tr>
<tr>
<td>• Detection and response to expected wear/tear</td>
<td>• Difficult to implement during line building stages due to the lack of welded components to establish a reference weld.</td>
</tr>
<tr>
<td>• Flexible programming for a variety of applications</td>
<td></td>
</tr>
<tr>
<td>• Weld data for quality analysis is automatically generated</td>
<td></td>
</tr>
<tr>
<td>• Alerts/faults to previously undetected production disturbances are provided</td>
<td></td>
</tr>
</tbody>
</table>
References

*www.slv-duisburg.de / widerstand@slv-duisburg.de